3.3.3 \(\int \frac {a+a \sin (c+d x)}{(e \cos (c+d x))^{7/2}} \, dx\) [203]

Optimal. Leaf size=126 \[ \frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}-\frac {6 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^4 \sqrt {\cos (c+d x)}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}+\frac {6 a \sin (c+d x)}{5 d e^3 \sqrt {e \cos (c+d x)}} \]

[Out]

2/5*a/d/e/(e*cos(d*x+c))^(5/2)+2/5*a*sin(d*x+c)/d/e/(e*cos(d*x+c))^(5/2)+6/5*a*sin(d*x+c)/d/e^3/(e*cos(d*x+c))
^(1/2)-6/5*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+
c))^(1/2)/d/e^4/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2748, 2716, 2721, 2719} \begin {gather*} -\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{5 d e^4 \sqrt {\cos (c+d x)}}+\frac {6 a \sin (c+d x)}{5 d e^3 \sqrt {e \cos (c+d x)}}+\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])/(e*Cos[c + d*x])^(7/2),x]

[Out]

(2*a)/(5*d*e*(e*Cos[c + d*x])^(5/2)) - (6*a*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*e^4*Sqrt[Cos[
c + d*x]]) + (2*a*Sin[c + d*x])/(5*d*e*(e*Cos[c + d*x])^(5/2)) + (6*a*Sin[c + d*x])/(5*d*e^3*Sqrt[e*Cos[c + d*
x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rubi steps

\begin {align*} \int \frac {a+a \sin (c+d x)}{(e \cos (c+d x))^{7/2}} \, dx &=\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}+a \int \frac {1}{(e \cos (c+d x))^{7/2}} \, dx\\ &=\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}+\frac {(3 a) \int \frac {1}{(e \cos (c+d x))^{3/2}} \, dx}{5 e^2}\\ &=\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}+\frac {6 a \sin (c+d x)}{5 d e^3 \sqrt {e \cos (c+d x)}}-\frac {(3 a) \int \sqrt {e \cos (c+d x)} \, dx}{5 e^4}\\ &=\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}+\frac {6 a \sin (c+d x)}{5 d e^3 \sqrt {e \cos (c+d x)}}-\frac {\left (3 a \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 e^4 \sqrt {\cos (c+d x)}}\\ &=\frac {2 a}{5 d e (e \cos (c+d x))^{5/2}}-\frac {6 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^4 \sqrt {\cos (c+d x)}}+\frac {2 a \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}+\frac {6 a \sin (c+d x)}{5 d e^3 \sqrt {e \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.82, size = 144, normalized size = 1.14 \begin {gather*} \frac {2 a e^{i (c+d x)} \left (i-6 e^{i (c+d x)}-3 i e^{2 i (c+d x)}+i \left (-i+e^{i (c+d x)}\right )^2 \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right )}{5 d e^3 \left (-i+e^{i (c+d x)}\right )^2 \sqrt {e \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])/(e*Cos[c + d*x])^(7/2),x]

[Out]

(2*a*E^(I*(c + d*x))*(I - 6*E^(I*(c + d*x)) - (3*I)*E^((2*I)*(c + d*x)) + I*(-I + E^(I*(c + d*x)))^2*Sqrt[1 +
E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/(5*d*e^3*(-I + E^(I*(c + d*x)))^
2*Sqrt[e*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(134)=268\).
time = 4.08, size = 304, normalized size = 2.41

method result size
default \(-\frac {2 \left (12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a}{5 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, e^{3} d}\) \(304\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))/(e*cos(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/
e^3*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*si
n(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*
x+1/2*c)+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c))*a/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))/(e*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

e^(-7/2)*integrate((a*sin(d*x + c) + a)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 175, normalized size = 1.39 \begin {gather*} -\frac {3 \, {\left (i \, \sqrt {2} a \cos \left (d x + c\right ) \sin \left (d x + c\right ) - i \, \sqrt {2} a \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (-i \, \sqrt {2} a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + i \, \sqrt {2} a \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, a \cos \left (d x + c\right )^{2} + 3 \, a \sin \left (d x + c\right ) - 2 \, a\right )} \sqrt {\cos \left (d x + c\right )}}{5 \, {\left (d \cos \left (d x + c\right ) e^{\frac {7}{2}} \sin \left (d x + c\right ) - d \cos \left (d x + c\right ) e^{\frac {7}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))/(e*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

-1/5*(3*(I*sqrt(2)*a*cos(d*x + c)*sin(d*x + c) - I*sqrt(2)*a*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassP
Inverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(-I*sqrt(2)*a*cos(d*x + c)*sin(d*x + c) + I*sqrt(2)*a*cos(d
*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*a*cos(d*x +
c)^2 + 3*a*sin(d*x + c) - 2*a)*sqrt(cos(d*x + c)))/(d*cos(d*x + c)*e^(7/2)*sin(d*x + c) - d*cos(d*x + c)*e^(7/
2))

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))/(e*cos(d*x+c))**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5990 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))/(e*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)*e^(-7/2)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+a\,\sin \left (c+d\,x\right )}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))/(e*cos(c + d*x))^(7/2),x)

[Out]

int((a + a*sin(c + d*x))/(e*cos(c + d*x))^(7/2), x)

________________________________________________________________________________________